Abstract

Here, we report on the preparation and characterization of a new organic/inorganic hybrid nanocomposite comprised of the glycine-modified polyoxomolybdate (abbreviated as (Gly)3PMo12O40) and manganese ferrite (MnFe2O4) nanoparticles. The hybrid nanocomposite was successfully synthesized under mild ultrasound irradiation and characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray, and vibrating sample magnetometer techniques. To explore the (Gly)3PMo12O40@MnFe2O4 applicability, it was used in catalytic oxidative desulfurization (Cat-ODS) reactions. The experimental results revealed excellent catalytic activity of the hybrid nanocomposite in the removal of hazardous organosulfur compounds from model fuel oils (MFOs) and typical real gasoline. The sulfur removal from MFOs could reach up to 95% at the operating temperature of 35°C, the ambient pressure, and the contact time of 1 hour. Quite surprisingly, the total sulfur content of real gasoline was lowered from 0.4985 to 0.0198 wt% under the same reaction conditions. In addition, the (Gly)3PMo12O40@MnFe2O4 presented a brilliant magnetically reusability with slight diminution after seven consecutive Cat-ODS cycles. These results encourage the further exploration of the application of (Gly)3PMo12O40@MnFe2O4 organic/inorganic hybrid nanocomposite in the production of clean diesel and jet fuels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call