Abstract

Visible-light-driven g-C3N4/BiOI/BiOBr composite photocatalysts were successfully synthesized by a facile deposition precipitation method. The as-prepared samples have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and ultraviolet–visible absorption spectroscopy (UV–vis). The photocatalytic experiments indicate that the g-C3N4/BiOI/BiOBr composites possess enhanced photocatalytic activity towards the degradation of methyl orange (MO), and killing Escherichia coli. Photoluminescence (PL) spectra reveal that the introduction of g-C3N4 could efficiently promote the separation efficiency of photo-induced charge carriers in the composites. The radical trapping experiment and ESR analysis confirmed that the active species ·O2−, h+ and ·OH are the reactive oxygen species in the photocatalytic process. Our results suggest that the g-C3N4/BiOI/BiOBr composite photocatalysts can be used in water treatment of degrading the organic pollutants and killing the water bacteria at the same time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call