Abstract

In this research, WO3, g-C3N4, and g-C3N4@WO3 nanocomposites were synthesized from Na2WO4.2H2O and urea precusors via the hydrothermal method in a strong acid medium. Physico-chemical characteristics of WO3, g-C3N4, and g-C3N4@WO3 nanocomposites were examined by means of XRD, Raman, FTIR, FE-SEM, BET, and UV-Vis spectroscopy. The produced materials were then applied for studying adsorptive removal of methylene blue (MB) as a model pollutant from aqueous solutions. The results showed that g-C3N4@WO3 nanocomposites were successfully synthesized, with a hexagonal shape and an average crystal size of in the range of 15.4–20.7 nm. The surface area (68.3 m2/g) of g-C3N4@WO3 nanocomposites was 2.37 times higher compared to sole WO3, and g-C3N4@WO3 composites were mesoporous materials with a typical average pore diameter of 4.5 nm. It was revealed that the MB adsorption process occurred extremely quickly, reaching equilibrium after only about 20 min, with a maximum uptake of MB of 190 mg/g which was significantly higher than other adsorbents. The adsorption process was followed the first-order-kinetics model and the adsorbent showed high durability in adsorbing MB, with a slight decline in adsorption efficiency after 4 cycles (from 98.7% to 95.9%). This research provides an easy method for producing high adsorption capacity nanocomposite which can be applied for efficient removal of MB from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call