Abstract

A new fiber adsorbent for removing Cr(VI) ions from aqueous solution was prepared by grafting and modification. The grafted fiber and modified fiber were characterized by SEM, FTIR, and TGA. FTIR analysis indicated that acrylonitrile monomer was grafted onto the PET surface and that new groups were present on the surface after the modification. Scanning electron microscopy showed that the PET fiber was wider after grafting and especially modification. The TGA results showed that the degradation steps and the thermal behavior of the PET fiber changed after modification. The effects of the pH, ion concentration, and temperature on the amount of Cr(VI) adsorbed were investigated. The fiber showed its maximum adsorption capacity in acidic medium. Isotherm studies indicated that the experimental results were best fitted to the Langmuir isotherm. The adsorption capacity of the modified fiber was found to be 25.77, 38.17, and 44.84 mg/g fiber at 25, 35, and 45 °C, respectively. Kinetic results indicated that the adsorption of Cr(VI) onto the modified fiber followed a pseudo-second-order kinetic model. Calculated thermodynamic parameters demonstrated that the adsorption of Cr(VI) ions on the modified fiber is an endothermic, feasible, and spontaneous process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call