Abstract

Functionalized siloxane-based solid polymer electrolytes were synthesized using a platinum-catalyzed silylation reaction. The ionic conductivities of these solid polymer electrolytes were measured as a function of the concentration of lithium bis(trifluoromethylsulfonyl)imide (LiTFSi) salt. The highest ionic conductivity and lowest activation energy of solid polymer electrolytes were observed to be 1.15 × 10−4 S cm−1 (25 °C) and 3.85 kJ mol−1, respectively. The interface property between electrolyte and electrode and thermal stability of the polymer electrolytes were found to enhance after they were functionalized with acrylate, and the functionalized electrolytes were observed to maintain a glass transition temperature as low as that of other siloxane compounds. Thus, modifications involving acrylate with ethylene oxide group substitution provide a route for carrier ions and enhance both the ionic conductivity and mechanical properties of the siloxane structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.