Abstract

With the growing scarcity of water, the remediation of water polluted with heavy metals is the need of hour. The present research work is aimed to address this problem by adsorbing heavy metals ions (Pb (II) and Cr (VI)) on modified graphene oxide having an excess of carboxylic acid groups. For this, graphene oxide (GO) was modified with chloroacetic acid to produce carboxylated graphene oxide (GO-COOH). The successful synthesis of graphene oxide and its modification has been confirmed using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and Transmission electron microscopy (TEM). The increase in surface area of graphene oxide after treatment with chloroacetic acid characterized by BET indicated its successful modification. A batch experiment was conducted to optimize the different factors affecting adsorption of both heavy metals on GO-COOH. After functionalization, we achieved maximum adsorption capacities of 588.23 mg g−1 and 370.37 mg g−1 for Pb and Cr, respectively, by GO-COOH which were high compared to the previously reported adsorbents of this kind. The Langmuir model (R2 = 0.998) and Pseudo-second-order kinetic model (R2 = 0.999) confirmed the monolayer adsorption of Pb and Cr on GO-COOH and the chemisorption as the dominant process governing adsorption mechanism. The present work shows that the carboxylation of GO can enhance its adsorption capacity efficiently and may be applicable for the treatment of wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.