Abstract
Quantum dots (QDs) need to be attached to other chemical species if they are to be used as biomarkers, therapeutic agents or sensors. These materials also need to disperse well in water and have well-defined functional groups on their surfaces. QDs are most often synthesized in the presence of ligands such as trioctylphosphine oxide, which render the nanoparticle surfaces hydrophobic. We present a complete protocol for the synthesis and water solubilization of hydrophobic CdSe/ZnS QDs using designer amphiphilic polymeric coatings. The method is based on functionalization of an anhydride polymer backbone with nucleophilic agents. Small functional groups, bulky cyclic compounds and polymeric chains can be integrated into the coating prior to solubilization. We describe the preparation of acetylene- and azide-functionalized QDs for 'click' chemistry. The method is universal and applicable to any type of nanoparticle stabilized with hydrophobic ligands able to interact with the alkyl chains in the coating in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.