Abstract

The use of copper(I) halides in conjunction with pyridine imine ligands is reported to lead to a range of controlled molecular weight and architecture polymers. The use of multifunctional initiators leads to di-, tri- and tetra-functional star polymers based on pentaerythritol cores. The polymerisations all follow excellent first order kinetics with Mn increasing linearly with conversion. The polymerisation is first order in copper halide. A range of α-functional polymers with 4-[(4-chloro-6-methoxy-1,3,5-triazin-2-yl)amino]phenyl 2-bromo-2-methylpropionate, N-hydroxysuccinimide and phthalimide have been prepared which introduce terminal functionality into polymers for subsequent coupling and potential synthesis of conjugates for biologically active compounds. Finally block/graft amphiphilic copolymers are demonstrated via the preparation of a statistical copolymer macroinitiator containing a hydroxy functionality which is used for the polymerisation of dimethylaminoethyl methacrylate prior to esterification of the hydroxy functionality to give living radical polymerisation initiators which are used subsequently in the polymerisation of methyl methacrylate. Copper(I) mediated living radical polymerisation is shown to be an effective method for the synthesis of a range of functional synthetic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call