Abstract

ABSTRACTIn this study, the synthesis of fuel oil and carbon nanotubes (CNTs) using waste plastic in a batch pyrolysis reactor of 750 mL capacity was carried out. Density, calorific values and FTIR spectroscopy confirmed the formation of fuel oil. The calorific value of oil was higher than the energy needed for pyrolysis process. The same reactor was used as an autoclave for the synthesis of CNTs. SEM and TEM results showed that carbon nanotubes of 40–60 nm diameters were grown on Ni/Mo/MgO catalyst. CNT yield was around 3.2 g of CNTs per 6 g of PP. The purity of CNTs was investigated by thermogravimetric analysis (TGA). The present study proposes a feasible process to convert plastic waste into furnace oil by rapid pyrolysis and synthesis of CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.