Abstract

A novel polymer electrolyte membrane was synthesized by radiation-induced grafting and consequent atom transfer radical polymerization (ATRP). First, bromine-containing perfluorinated grafts were prepared by radiation grafting of 2-bromotetrafluoroethyl trifluorovinyl ether (BrTFF) into a poly(ethylene-co-tetrafluoroethylene) (ETFE) film. Then, the bromine atoms in the ETFE-g-PBrTFF grafted films were acted as initiators, and the films were treated with Cu(I)-based catalytic system of a CuBr and 2,2′-bipyridyl (bpy) for the ATRP. By adjusting the molar ratio of initiator/CuBr/bpy and the reaction temperature, branched poly(styrene) with a grafting yield of above 100% on the poly(BrTFF) main chains was constructed in ETFE-g-PBrTFF films. Thermal analysis revealed that the perfluorinated poly(BrTFF) main chains were miscible to ETFE, whereas the hydrocarbon poly(styrene) branches were phase-separated from the ETFE-g-PBrTFF film. Sulfonic groups could be further introduced into the poly(styrene) grafts of ETFE-g-PBrTFF-g-PS films with homogeneous distribution in a perpendicular direction to the membrane surface. The resulting membrane with a styrene grafting yield of 15% exhibited higher proton conductivity than commercial Nafion 117 membrane. Likewise, it had better chemical stability than ETFE-g-PSSA membrane prepared by conventional radiation-induced grafting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.