Abstract
The fluorination of two types of graphene oxides conducted by an easy and scalable deoxyfluorination reaction is reported. This reaction was carried out using diethylaminodifluorosulfinium tetrafluoroborate, a stable compound and an efficient reagent for replacing oxygenated functional groups of graphene oxide by fluoride. The graphene oxide produced by the Hummers’ method (GOH) showed lower reactivity than that produced by the Brodie’s method (GOB). X-ray photoelectron spectroscopy indicated that the highest fluorination degree achieved was 4.7 at.% when GOB was used, and the CF character corresponds to semi-ionic bonds. Additionally, a partial reduction of GO was concomitant with the functionalization reaction. The deoxyfluorination reaction changed the crystalline structure of GO, favoring the reconstruction of Csp2 structure of the graphene lattice and reducing the number of stacked layers. The fluorination led to the modification of the electronic band structure of this material, increasing the band gap from 2.05 eV for GOB to 3.88 eV for fluorinated GOB, while for GOH the low flurionation led to a slight increase of the band gap, from 3.48 eV to 3.57 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.