Abstract

In this study, novel fluorinated carboxylic acid esters of the generic structure TfO–CH2–(CF2)n–COOCH3 (n = 2,4,6, Tf = triflate) were synthesized. The triflates were reacted with 2-hydroxy-3,4,5-trimethoxybenzaldehyde via Williamson ether syntheses. The resulting electron-rich compounds were used as aldehydes in the Rothemund reaction with pyrrole to form ester-substituted porphyrins. After metalation with Ni(acac)2 and hydrolysis electron-rich porphyrins were obtained, that are equipped with covalently attached long chain acid substituents. The target compounds have potential applications in catalysis, sensing, and materials science. The fluorinated aliphatic carboxylic acids (TfO–CH2–(CF2)n–COOCH3) with triflate as leaving group in terminal position are easily accessible and versatile building blocks for attaching long chain acids (pKa 0–1) to substrates in Williamson ether-type reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.