Abstract

Oxyfluorides possess considerable attention for their multiple excellent properties, but the conventional high-temperature solid-state syntheses have seen bottlenecks in the synthesis of new compounds. Herein, we report a novel layered oxyfluoride ZnMoO4:F, which is prepared by a facile hydrothermal method using ZnF2 as the fluoride source. The fluoride anions are successfully introduced into the oxygen sublattice, which is confirmed by a combined analysis using XRD, STEM, and TGA techniques. The as-synthesized ZnMoO4:F has an absorption edge at around 550 nm, indicating a red shift of Eg to the visible region compared to the oxide counterpart. The layered oxyfluoride exhibits an enhanced photocatalytic active for hydrogen evolution under simulated sunlight (λ > 350 nm), and the activity of ZnMoO4:F (651.9 μmol g-1) was 2 times higher than that of ZnMoO4 (309.7 μmol g-1). Further electrochemical analysis has shown that the conduction band position plays a critical role in the high performances of ZnMoO4:F. This work sheds new light on the future design and synthesis of novel fluoride-doped materials for photocatalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.