Abstract

The development of fluorescent pigments is an area of interest in several research fields due to their high sensitivity. In the current study-eight known and three new N,N-dimethylamino-chalcones (12a-k) were synthesized with good yields using the Claisen-Schmidt reaction. For each molecular system, the photophysical properties, including the maximum absorption wavelength (λAbsorption), molar absorption coefficient (ε), maximum excitation wavelength (λExcitation), maximum emission wavelength (λEmission), Stokes Shift (Δλ), fluorescence quantum yield (Φfl), fluorescence lifetime (τfl), radiative and non-radiative rate constants (kR and kNR, respectively) were evaluated. Variations in each of these properties were analyzed depending on the substituents present on each compound. To relate the chemical structures of the synthesized compounds to their photophysical properties, Hansch analysis (2D-QSPR) was applied. As a result of Hansch analysis, we found different photophysical properties related to molecular orbitals and the energy of their derivatives (Highest Occupied Molecular Orbital-HOMO, Lowest Unoccupied Molecular Orbital-LUMO, Difference between LUMO-HOMO-ΔLH, Chemical potential-µ, Hardness-η, Softness-S, and electrophilic global index-ω) as well as to the atomic charges on atoms C5, Cα, Cβ, and CO. The application of this type of analysis has made it possible to understand and subsequently design new molecules with defined photophysical properties. Finally, the compounds were use as fluorescent pigment to get living cell imaging on breast cancer cells, obtaining the compound 12a as promissory alternative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.