Abstract

Graphene has recently been the focus of a great deal of attention owing to its outstanding properties, which include high mobility, high thermal conductivity and high structural stability. In this study, a few layer graphene was successfully synthesized from methane gas using a non-transferred direct current arc plasma system. Non-transferred thermal plasma offers high temperature, steep temperature gradient and high enthalpy to enhance the reaction kinetics of graphene synthesis. In order to prepare high quality few layer graphene, graphene products synthesized under several conditions was analyzed comparatively. Effects of gap distance between the plasma torch and graphite substrate, the flow rate of additional reactant gas, and different types of plasma forming gas on the synthesis of few layer graphene were investigated. Methane gas was injected into the plasma jet as a carbon source for the synthesis of graphene and a thermal plasma jet was generated by pure argon or a mixture of argon-hydrogen. The results revealed that hydrogen gas improved the quality of few layer graphene by inducing surface etching and increasing plasma power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call