Abstract
Individually, ferrocene and thiophenes have incredible properties and important applications. During the last two decades, scientists synthesized polythiophenes containing ferrocene in the main and side chains. Polythiophenes have redox, conducting, and optical properties. Because of these properties, polythiophenes have been used in sensing applications. In addition, ferrocene has reversible redox properties and accordingly has been used in a lot of sensing devices, such as glucose sensing. Ferrocene can have +2 or +3 oxidation state, which can correspond to “0” and “1”, and thus can be used as a memory storage material. When these two moieties are combined together, they show good compatibility. Therefore, the resulting materials/polymers have been used in memory storage and chemical sensing devices. Thus, we carefully selected studies that are only associated with ferrocene-based polythiophenes. In this review, we tried to focus on the synthesis and applications of ferrocene-based polythiophenes. There are many methods for the polymerization of thiophenes. Here, we discussed the electrochemical polymerization, oxidation polymerization, nickel mediated coupling reactions, and Suzuki polycondensation. In addition, polythiophenes can be decorated with ferrocene, pre- or post-polymerization. These materials were examined for important applications, including information storage, DNA sensing, protein sensing, and glucose sensing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.