Abstract

In this study, FeCoNiCuZn single-phase high-entropy alloy powders were synthesized at room temperature for the first time using high-frequency electromagnetic-field assisted ball milling. FeCoNiCuZn was found to be a type of soft magnetic material exhibiting saturation magnetization as high as 65.92 emu/g. Its microwave-absorbing properties were investigated in the frequency range of 2–18 GHz. Its minimum reflection loss reached 14.69 dB at 10.96 GHz, corresponding to a thickness of 1.5 mm and effective bandwidth of reflection loss values below 10 dB (90% of microwave absorption) of 2.5 GHz (9.9–12.4 GHz). In order to understand the mechanism involved, a comparative experiment with the same experimental conditions but without the high-frequency electromagnetic field was performed. The results show that a type of non-thermal effect that changes the diffusion ability and solid solution effect of metal atoms exists in the high-frequency electromagnetic-field-assisted ball milling processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.