Abstract
α-Fe2O3/TiO2 heterogeneous composites were synthesized by the sol-gel process to increase the photocatalytic activity of TiO2. The structural, morphological, and optical characteristics of the composites were determined by X-ray diffraction, scanning electron microscope, and UV–vis diffuse reflectance spectroscopy. Results revealed that the incorporation of α-Fe2O3 to TiO2 widened the visible light absorption ability of TiO2. It was realized that the calcination temperature plays a crucial role in morphology development hence photocatalytic activity of the α-Fe2O3/TiO2 heterogeneous composites. The photocatalytic activity of the composites calcined at various temperatures was evaluated for the degradation of Methylene Blue (MB) and Phenol (Ph) in aqueous medium under UV and sun-like illuminations. The α-Fe2O3-TiO2 composites exhibits superior photocatalytic efficiency to degrade both MB and Ph as compared to both pristine TiO2 and pristine α-Fe2O3 under sun-like illumination. The α-Fe2O3/TiO2 composite degraded approximately 90 % of MB and 50 % of Ph in 180 min sun-like illumination. Improvement in photocatalytic activity is attributed to the separation of photogenerated electron/hole pairs through the interaction of α-Fe2O3 and TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.