Abstract

In this work, BiOBr photocatalyst co-doped with Fe and N (Fe–BiOBr–N) was synthesized by a microwave-assisted solvothermal method. This material was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, X-ray photoelectronic spectrometry, UV–Vis diffuse reflectance spectroscopy, atomic absorption spectroscopy, elemental analysis, and photoluminescence techniques. The characterization of this material revealed the formation of flower-like structures and the successful incorporation of Fe and N in BiOBr. The incorporation of Fe and N in BiOBr caused a decrease of the band gap (from 2.87 to 1.92 eV), the crystal size (from 12.93 to 8.43 nm), and the recombination rate of photogenerated charges compared with unmodified BiOBr. Likewise, these dopants caused an increase in specific surface area (from 7 to 16 m2/g). The photocatalytic activity was assessed on the elimination of bisphenol A (BPA) under visible radiation. Fe–BiOBr–N exhibited higher photocatalytic activity than pristine BiOBr on the BPA degradation, allowing complete degradation and 65% of mineralization in 240 min, while using pristine BiOBr 40% of degradation and 20% of mineralization were obtained. Fe–BiOBr–N is a promising option for the effective elimination of persistent contaminants such as BPA in the aqueous medium, under visible radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.