Abstract

In this study, monoglycidyl silyl etherated eugenol (GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T (temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call