Abstract
Fe3O4-Arg was selected as the optimal carrier due to its high activity recovery of immobilized cells in the preparation of Fe3O4-Arg-Cells. The optimal immobilization conditions for the preparation of Fe3O4-Arg-Cells were 30 °C, 4 h, pH 7, and 3 g dry yeast. The activity recovery of immobilized cells reached 76.8 %. For a batch reduction in a shaker in an alternating magnetic field, Fe3O4-Arg-Cells were used as a catalyst to gain ethyl (R)-4-chloro-3-hydroxybutyrate ((R)-CHBE). For further improvement in reduction productivity, a continuous reduction in the magnetic fluidized bed reactor system (MFBRS) was completed. Under their optimal transformation conditions, it took 24 h for Fe3O4-Arg-Cells to complete the conversion of ethyl 4-chloro-3-oxobutanoate (COBE) (0.8553 mol/L) in the shaker and only 8 h for the batch reduction in an alternating magnetic field. Continuous reduction in MFBRS provided new ideas for the efficient production of (R)-CHBE; 1.5882 mol/L (10 mL) of COBE can be completely converted in 6 h. The conversion and enantiomeric excess (e.e.) of (R)-CHBE were 100 % and above 99.9 % respectively, in the three reaction systems mentioned above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.