Abstract

The piperazine heterocycle is broadly exploited in FDA-approved drugs and biologically active compounds, but its chemical diversity is usually limited to ring nitrogen substitutions, leaving the four carbon atoms underutilized. Using an efficient four-step synthesis, chiral amino acids were transformed into 6-substituted piperazine-2-acetic acid esters as diastereomeric mixtures whose cis and trans products could be chromatographically separated. From six amino acids (both antipodes), a complete matrix of 24 monoprotected chiral 2,6-disubstituted piperazines was obtained, each as a single absolute stereoisomer in multigram quantities. These diverse and versatile piperazines can be functionalized on either nitrogen atom, allowing them to be used as scaffolds for parallel library synthesis or intermediates for the production of novel piperazine compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call