Abstract

This paper presents an algorithm for the synthesis of robust distributed controllers for interconnected linear discrete-time systems. For a network of interconnected uncertain linear time-invariant systems, the distributed controller achieves robust stability and a guaranteed level of robust performance in a well-defined H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> sense. The setting of this paper is in discrete time. Based on the theory of dissipative dynamical systems, conditions for the analysis of robust stability and robust performance of networks are derived in terms of feasibility tests of linear matrix inequalities. From these conditions, computationally tractable synthesis conditions are derived. An iterative D-K type of synthesis algorithm is proposed that yields a robust distributed controller. Convergence properties of the algorithm are inferred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.