Abstract

In this chapter, a multiagent system composed of linear identical dynamical agents is considered. The agents are assumed to share relative state information over a communication network. This exchange of relative information is assumed to be subject to delays. New methods to synthesize distributed state feedback control laws for the multiagent system, using delayed relative information along with local state information with guaranteed LQR performance, are presented in this chapter. Two types of delays are considered in the relative information exchange: fixed and time-varying. Existing delay-dependent stability criteria are modified to incorporate LQR performance guarantees while retaining convex LMI representations to facilitate the synthesis of the control gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.