Abstract

Multi component reactions over heterogeneous solid acid catalysts are extremely important owing to easy separation, amenable recycling, and prospective scaling up of the process. Here, we are reporting the synthesis of biologically important dihydropyrimidinones over postsynthetic modified Cr-based metal–organic framework materials as heterogeneous catalysts containing the bifunctional Lewis and Brønsted acid sites. Cr-based metal–organic frameworks contained coordinatively unsaturated metal sites as inherent Lewis acid sites, whereas postsynthetic modifications introduced the Brønsted acid sites in the framework. A direct one pot synthesis route was employed to produce the pristine MOF in pure aqueous medium without using any additives. The bulk structure, morphology, surface and bonding properties of the synthesized materials were thoroughly characterized with powder XRD, FTIR, XPS, FE-SEM, TGA, and N2 sorption isotherms. A qualitative evolution of acid strength was carried out over the functionalized MOFs. Among the post synthetic functionalized materials, carboxylic acid functionalized framework exhibited a very high yield of dihydropyrimidinones under solvent less moderate reaction conditions. The catalyst also demonstrated a robust recyclability and wide substrate scope. Comparative study showed a very high catalytic activity of the postsynthetic modified MOFs in comparison to the reported literature. The reaction condition was optimized by varying parameters like solvent, temperature, reaction duration and catalyst loadings. The mechanistic studies indicated the involvement of both the Lewis and Brønsted sites acid sites of the catalysts in the multicomponent reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call