Abstract

The design and synthesis of a Lonsdaleite (lon) network is an attractive and challenging supramolecular target. Our reticular synthesis strategy of slow diffusion of solutions of a simple rigid tetrahedral ligand and a Ag(I) metal ion, at room temperature and atmospheric pressure, resulted in both lon-MOFs and diamondoid (dia-MOFs) and associated 2D honeycomb networks. Solvent appeared to play a key role in templating the formation of these related networks. Nanoindentation studies show that a dia-MOF was 42% harder than a lon-MOF counterpart. The lon-MOFs were thermally stable and retained integrity until 370 °C while dia-MOFs exhibited stepwise collapse after initial loss of solvents. As lon networks are often only qualitatively identified, Cremer–Pople ring puckering analysis was used to quantify the degree of distortion in the lon and related 4-connected 66 networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.