Abstract

The synthesis of dense nanometric composites of TiN‐TiB2 by mechanical and field activation was investigated. Powder mixtures of Ti, BN, and B were mechanically activated through ball milling. Some powders were milled to reduce crystallite size but to avoid initiating a reaction. In other cases powders were milled and allowed to partially react. All these were subsequently reacted in a spark plasma synthesis (SPS) apparatus. The products were composites with equimolar nitride and boride components with relative densities ranging from 90.1% to 97.2%. Crystallite size analyses using the XRD treatments of Williamson‐Hall and Halder‐Wagner gave crystallite sizes for the TiN and TiB2 components in the range 38.5–62.5 and 31.2–58.8 nm, respectively. Vickers microhardness measurements (at 2 N force) on the dense samples gave values ranging from 14.8 to 21.8 GPa and fracture toughness determinations (at 20 N) resulted in values ranging from 3.32 to 6.50 MPa·m1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.