Abstract

Well-defined silver (Ag) dendritic nanostructures were successfully synthesized by electrodeposition without the use of any template or surfactant. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to investigate the as-prepared Ag nanomaterials. These dendrites are aggregates of Ag nanoparticles, which are highly crystalline in nature. The concentration of AgNO 3 affects the shape of the nanoparticles. In addition, the electrochemical properties of the Ag dendrite-modified glassy carbon electrode (Ag/GC) were characterized by cyclic voltammetry and chronoamperometry. Results indicated that the as-obtained Ag dendrites exhibited favorable electroreduction activity towards oxygen (O 2) and hydrogen peroxide (H 2O 2). When used as a sensor, the Ag/GC electrode exhibited a wide linear range of 0.005–12 mM H 2O 2, with a remarkable sensitivity of 7.39 μA/mM, a detection limit of 0.5 μM, estimated at a signal-to-noise ratio of 3, and a rapid response time (within 5 s). Moreover, the electrode showed good reproducibility, anti-interferant ability and long-term stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call