Abstract
AbstractWe report the synthesis of the first‐ (G1) and second‐generation (G2) dendritic FeII porphyrins 1⋅Fe–4⋅Fe (G1) and 6⋅Fe (G2) bearing distal H‐bond donors ideally positioned for stabilization of FeIIO2 adducts by H‐bonding (Fig. 1). A first approach towards the construction of these novel biomimetic systems failed unexpectedly: the Suzuki cross‐coupling between appropriately functionalized ZnII porphyrins and ortho‐ethynylated aryl derivatives, serving as anchors for the distal H‐bond donor moieties, was unsuccessful (Schemes 1, 3, and 5), presumably due to steric hindrance resulting from unfavorable coordination of the ethynyl residue to the Pd species in the catalytic cycle (Scheme 6). The target molecules were finally prepared by a route in which the ortho‐ethynylated meso‐aryl ring is introduced during porphyrin construction in a mixed condensation involving the two dipyrrylmethanes 33 and 34, and aldehyde 36 (Schemes 7 and 8). Following attachment of the dendrons (Scheme 11), the distal H‐bond donors were introduced by Sonogashira cross‐coupling (Scheme 12), and subsequent metallation afforded the dendritic FeII porphyrins 1⋅Fe–6⋅Fe. 1H‐NMR Spectroscopy proved the location of the H‐bond donor moiety atop the porphyrin surface, and X‐ray crystal‐structure analysis of model system 45 (Fig. 2) revealed that this moiety would not sterically interfere with gas binding. With 1,2‐dimethyl‐1H‐imidazole (DiMeIm) as ligand, the dendritic FeII porphyrins formed five‐coordinate high‐spin complexes (Figs. 3 and 4) and addition of CO led reversibly to the corresponding stable six‐coordinate gas complexes (Fig. 6). Oxygenation, however, did not result in defined FeIIO2 complexes as rapid decomposition to FeIII species took place immediately, even in the case of the G2 dendrimer 6⋅Fe(DiMeIm) (Fig. 7). In contrast, stable gas adducts are formed between dendritic CoII porphyrins and O2 in the presence of DiMeIm as axial ligand, as revealed by electron paramagnetic resonance (EPR). The possible stabilization of these complexes through H‐bonding involving the distal ligand is currently under investigation in multidimensional and multifrequency pulse EPR experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.