Abstract

Dendritic polymers have shown great potential as drug carriers due to their precise chemical makeup, nanosized structures and high density of surface functionalities, but most dendrimers bear functionalities only on the periphery, limiting their utility as drug-delivery carriers. Herein, we report synthesis of biodegradable bifunctional dendritic polymers with acrylate termini and interior hydroxyl groups. These bifunctional dendritic polymers are nontoxic and biodegradable, offering a versatile platform for various biomedical applications. As a proof of concept, the fourth-generation dendritic polymer was PEGylated on the periphery, and the anticancer drug camptothecin was tethered in its interior, forming a well-defined core–shell-structured dendritic polymer conjugate with a high drug loading capacity (up to ∼17.4 wt%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.