Abstract

Cyclopentadiene trimer (tricyclopentadiene) is an important raw material during the synthesis of high-energy–density fuel. In this study, tricyclopentadiene was synthesized through a [4+2] cycloaddition between endo-dicyclopentadiene and cyclopentadiene over microporous zeolites (ZSM-5, HY) and mesoporous Al-MCM-41 catalysts. The catalytic activity was strongly influenced by the average pore size and the Brönsted acidity of the catalyst. Of the tested catalysts, the NH4F-treated Al-MCM-41 catalyst, which had meso-sized pores (3.4nm in average) and enhanced Brönsted acidity, exhibited the best dicyclopentadiene conversion, tricyclopentadiene selectivity and yield. The average pore size of the catalyst also influenced the isomer distribution of the tricyclopentadiene products: the mesoporous catalysts produced mixtures of exo- and endo-tricyclopentadiene, which favored the exo-fraction (approximately 40mol%) compared to the microporous catalysts (approximately 20mol%). The differences in the reaction pathways followed by the zeolites and Al-MCM-41 catalysts were discussed. To investigate the structural and acidic properties of the catalysts, various characterization techniques were applied, such as low-angle X-ray diffraction, N2 adsorption–desorption, ammonia temperature-programmed desorption, and Fourier transform-infrared spectroscopy of adsorbed pyridine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call