Abstract

A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent, benzoyl peroxide as the initiator, and ethylene glycol dimethacrylate as the crosslinker. The effects of interaction on the adsorption capacity of the molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) were investigated. A comparison of the adsorption capacity for MIP and NIP indicated that the NIP had the lowest adsorption capacity. The curcuminoid-imprinted polymer (Cur-MIP) was synthesized from 0.0237mmol of styrene, 47.0g of acetonitrile, 1.0238mmol of ethylene glycol dimethacrylate, 0.0325mmol of curcuminoids, and 0.2480mmol of benzoyl peroxide. A high-performance liquid chromatography method with fluorescence detection was developed and validated for various chromatographic conditions for the determination of the curcuminoids in turmeric samples. The sample solution was separated using the Cur-MIP via solid-phase extraction and analyzed on a Brownlee analytical C18 column (150mm × 6mm, 5µm) using an isocratic elution consisting of acetonitrile and 0.1% trichloroacetic acid (40:60, v/v). The flow rate was maintained at 1.5mL/min. The fluorescence detector was set to monitor at λex = 426nm and λem = 539nm. The quantification limit values were found to be 16.66, 66.66, and 33.33µg/L for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Thus, we concluded that the Cur-MIP and high-performance liquid chromatographic-fluorescence method could be applied to selective extraction and could be used as a rapid tool for the determination of curcuminoids in medicinal herbal extracts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call