Abstract

AbstractThe present study focuses on synthesis of SAPO-34 zeolite membrane on the surface of CuO–ZnO–Al2O3 (CZA) catalyst particles to form CZA@SAPO-34 core@shell structured catalyst. In contrast to the traditional support of porous alumina, CZA catalyst particles have a relatively brittle surface, which leads to a big challenge to coat SAPO-34 zeolite membrane on their surface. Moreover, the hydrothermal synthesis of SAPO-34 zeolite membrane is carried out under weakly alkaline condition at 200 °C for hours, which causes part of the surface of CZA to be fragmented. To overcome these shortcomings, the intermediate layer of alumina is introduced to the surface of the CZA particles and acts as a barrier to the high-temperature hydrothermal and alkaline condition. It also takes as a transition to enhance SAPO-34 zeolite seeds adherence to the surface of CZA particles. With the help of an alumina layer, a continuous and dense zeolite membrane has been obtained on the surface of CZA particles. The prepared core@shell structured catalyst has better selectivity in CO hydrogenation for producing light hydrocarbons because of the synergetic effects between the membrane and core catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.