Abstract

The development of an environment-friendly process for synthesizing nanoparticles in the field of bionanotechnology is growing day-by-day. Increasing drug resistance in microbes has compelled researchers to synthesize biologically active nanoparticles. In this study, we used Tribulus terrestris plant extract to synthesize CuO/NaCuSO4 nanocomposite. The synthesized samples were characterized through functional groups analysis of FTIR and morphological analysis of SEM. The X-ray diffraction (XRD) and ultra-visible light absorbance analysis (UV–vis) were used to find the nanocrystalline nature and bandgap energy of the biosynthesized copper oxide (CuO) nanoparticles, respectively. In the metal oxide region of Fourier transform infrared (FTIR) spectroscopy the copper oxide nanoparticles were confirmed at 523 cm−1 which showed the nature of plant extracts to control over the reduction and stabilizing of the nanoparticles. The Rietveld refinement analysis yielded unit cell compositions of 53.39% for CuO and 46.61% for NaCuSO4, respectively. The monoclinic structure of CuO was confirmed, and the crystalline size was calculated as 37 nm by XRD analysis. From UV–vis spectroscopy, the absorption peak was observed at 277 and 337 nm, revealing the presence of CuO nanoparticles. In fact, the cluster-like morphology patterns are captured by scanning electron microscopy (SEM) and particle sizes were observed around 102 nm. Finally, the dielectric properties of the synthesized copper oxide nanoparticles have been examined and reported in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call