Abstract

The (Cu,Mn,Co)3O4 (CMC) spinel layer is useful in inhibiting Cr vaporization that deteriorates the solid oxide fuel cell performance. The effectiveness of the spinel layer in suppressing volatile Cr species from the metallic interconnects is strongly dependent on layer density, which is influenced by particle size distributions and agglomerations of the spinel powders. Considering that the material properties were influenced by the synthesizing conditions, this study elucidated the influences of citric acid (fuel) on the structure, morphology, and electrical properties of sol–gel derived CMC spinel powders. Dual-phase CMC spinel powders, consisting of cubic CuMnCoO and tetragonal Mn2CoO4, were successfully synthesized at citrate-to-nitrate (CA/MN) ratios of 0.8, 1.0, and 1.2. An undesired CuCo2O4 phase was observed in spinel powders synthesized at a low CA/MN ratio of 0.5. The CA/MN ratio has influenced not only the phase formation of CMC spinel, but also the particle size distributions. The CA/MN ratio of 1.0 yielded the finest CMC spinel with the least agglomerates, which then produced the highest electrical conductivity of 116 Scm−1. Therefore, the CA/MN ratio of 1.0 was recommended for the synthesis of CMC spinel, which can be used in fabricating the protective coating of solid oxide fuel cell interconnects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.