Abstract
Copper doped Titanium dioxide TiO2 nanoparticles were synthesized by sol–gel method using titanium tetraisopropoxide and copper sulfate as precursors. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), Photoluminesce spectroscopy (PL) and atomic force microscopy (AFM). XRD analysis confirms the formation of anatase titanium dioxide and average particle size was 35[Formula: see text]nm. Cu– TiO2 exhibits a shift in the absorption edge toward visible spectrum. The rate of recombination and transfer behavior of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. From SEM spherical shaped nanoparticles was observed. Comparing with pure TiO2 nanoparticles, Cu doped TiO2 photocatalyst exhibited enhanced photocatalytic activity under natural sunlight irradiation in the decomposition of rhodamine B aqueous solution. The maximum 97% of degradation efficiency of Rhodamine B was observed at 0.6% Cu–TiO2 within 180[Formula: see text]min. The photocatalytic efficiency of Rhodamine B of Cu doped TiO2 nanoparticle was higher than the pure TiO2, which could be attributed to the small crystallinity intense light absorption in Sunlight and narrow bandgap energy of Copper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.