Abstract
AbstractMonodisperse micrometer microspheres having active hydroxyl groups with a dense core and a lightly crosslinked functional shell were prepared by two‐stage precipitation polymerization in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80 % of DVB was polymerized by precipitation in acetonitrile without any stabilizer as the first stage polymerization and used as the core. When the conversion of DVB was about 60 % in the first stage, hydroxyethyl methacrylate (HEMA) and azobisisobutyronitrile (AIBN) were introduced into the reaction system and copolymerized with unreacted DVB on the core surface to form a lightly crosslinked functional shell with hydroxyl groups formed on the surface during the second stage precipitation polymerization. Both the crosslinking degree and the thickness of the shell layer depend on HEMA loading. The kinetic study demonstrated that the conversion of HEMA increased slightly with increasing HEMA loading. Higher HEMA loading and AIBN concentration increased the reaction rate significantly and formed more soluble oligomers, which resulted in secondary initiation with high HEMA loading. The resulting core–shell polymer particles were characterized with scanning electron microscopy (SEM), and FTIR. Copyright © 2004 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.