Abstract
ZnS/C nanoparticles with core/shell structure are prepared by a simple solvothermal process followed by an annealing process. The core consists of a quite amount of ultrasmall ZnS nanocrystals (∼10nm) dispersing in in situ formed carbon matrix, which is covered by an outer carbon shell with ∼4nm thickness. The nano-sized ZnS crystals effectively shorten the lithium ion diffusion paths, while the uniform carbon shell, together with the inner amorphous carbon matrix not only provide fast electron conduction, but also act as a buffer matrix to accommodate volume change occurring on electrochemical cycling. Such hierarchical-type microstructure is beneficial concerning electrochemical performance of the proposed composite. When evaluated as an anode material for rechargeable lithium ion batteries, the ZnS/C nanocomposite shows a high specific capacity of 741mAhg−1 at a current density of 0.1Ag−1 after 300 cycles. Even at 5Ag−1, a high reversible capacity of 538mAhg−1 can be still achieved. The lithium diffusion coefficient of ZnS/C electrode is estimated as 6.1×10−11cm2s−1, contributing to the excellent rate performance of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.