Abstract

AbstractFabrication of 3d metal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3d metallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call