Abstract

A simple hydrothermal method has been developed for the one-step synthesis of copper-core/carbon-sheath nanocables in solution. The obtained nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), Raman, and UV-vis spectrum analysis. These copper@carbon nanocables formed through the hydrothermal reduction/carbonization in the presence of surfactant cetyltrimethylammonium bromide (CTAB) acting as the structure-directing agent by hydrothermal treatment. HRTEM and selected-area electron diffraction (SAED) indicate that the resulted Cu nanowires had the preferred [110] growth direction. The influence of the reaction temperature, reaction time, and pH on the final products was investigated in detail. The possible formation mechanism for copper-core/carbon-sheath nanocables was also proposed. Amorphous carbon nanotubes can be obtained by etching the copper core in the nanocables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call