Abstract

Caffeine (CAF) removal from water resources is important because it is widely distributed and can be toxic to aquatic life. The copper supported on mesoporous carbon/silica composite (Cu/MCS) in this research was developed as a novel adsorbent to remove caffeine from aqueous solutions. The Cu/MCS material was prepared in two steps. The first step was the preparation of a precursor consisting of copper and natural rubber distributed inside a hexagonal mesoporous silica matrix (Cu/NR/HMS). Then, the composite was carbonized at high temperature under inert gas conditions to obtain Cu/MCS material. The amount of Cu loading in the MCS structure was studied. The Cu/MCS composites revealed a high level of copper distribution incorporated into the mesoporous carbon/silica framework as confirmed by Powder X-ray diffraction (XRD) and Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer (SEM-EDS). The Cu/MCS materials possessed a high specific surface area (523–748 m2 g−1), large pore volume (0.80–0.86 cm3 g−1) and mesoporous diameter (3.07-3.30 nm). Fourier Transform Infrared Spectroscopy (FT-IR) and CHN analysis revealed a high amount of carbonaceous species dispersed in the Cu/MCS material. The Cu (0.010)/MCS, with copper loading of 1 mmol/g, revealed good properties for CAF removal when compared to other series of Cu/MCS adsorbents. Moreover, the Cu (0.010)/MCS composite exhibited the maximum adsorption capacity for CAF as 55.8 mg/g.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.