Abstract

Sea urchin-shaped hybrid copper powder (HCuP), which is characterized by copper alloy powder particles covered with vertically aligned Co-catalyzed carbon nanofibers (CNFs), was successfully synthesized to improve the oxidation resistance of copper paste. Fine spherical CuCo alloy particles with nominal composition of Cu/Co = 99/1 w/w were fabricated by atomization. Cobalt nanoprecipitates (CoNPs) used as the catalyst for carbon fiber growth were arranged on the surface of an alloy particle by heat treatment. CNFs were grown from the CoNPs on the alloy particle via thermal chemical vapor deposition (CVD). The conductive paste was prepared by milling using HCuP with resin and oleic acid. HCuP paste was screen-printed on a glass or plastic substrate and showed a resistivity as low as 1.2 × 10−4 Ω·cm after curing at 150 °C for 30 min in air (21% oxygen). These results indicate that the use of HCuP is a promising technology for printable electronics in a sustainable society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call