Abstract

Bimetallic Cu on Au nanoparticles with controllable morphology and optical properties were obtained via electrochemical synthesis. In particular, multilobed structures with good homogeneity were achieved through the optimization of experimental parameters such as deposition current, charge transfer, and metal ion concentration. A hyperspectral dark field scattering setup was used to characterize the electrodeposition on a single particle level, with changes in localized surface plasmon resonance frequency correlated with deposition charge transfer and amount of Cu deposited as determined by electron microscopy. This demonstrated the ability to tune morphology and spectra through electrochemical parameters alone. Time-resolved in situ measurements of single particle spectra were obtained, giving an insight into the kinetics of the deposition process. Nucleation of multiple cubes of Cu initially occurs preferentially on the tips of Au nanoparticles, before growing and coalescing to form a multilobed, lumpy shell. Modifying the surface of Au nanoparticles by plasma treatment resulted in thicker and more uniform Cu shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.