Abstract
This paper presents a synthesis procedure for a compliant four-bar linkage with three specified equilibrium configurations. The finite position synthesis equations are combined with equilibrium constraints at the flexure pivots to form design equations. These equations are simplified by modeling the joint angle variables in the equilibrium equations using sine and cosine functions. Solutions to these design equations were computed using a polynomial homotopy solver. In order to provide a design specification, we first compute the six equilibrium configurations of a known compliant four-bar mechanism. We use these results as design requirements to synthesize a compliant four-bar. The solver obtained eight real solutions which we refined using a Newton-Raphson technique. A numerical example is provided to verify the design methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.