Abstract

Phospholipids are essential for the preservation of life on the planet and carry numerous critical roles and functions, including being the main constituents of the cell-membranes in both eukaryotic and prokaryotic cells, providing (more bioavailable) energy, and maintaining chemical and electrical processes in the body. The structural characteristics of phospholipids can vary greatly among species, however, commonly consist of a hydrophilic region (phosphate-containing head-group) and a hydrophobic region (fatty acids, €œtails€), providing the amphiphilic features and unique functions. The countless number of possible configurations enables the continuous synthesis of novel phospholipid species. The synthesis of specific phospholipids, so-called €œdesigner-phospholipids€, is commonly carried out through modifications of more common and easily accessible phospholipid species, catalyzed by the use of either non-specific chemical catalysts or specific enzymes. Enzymatic methods, being most prominent, are often using biphasic reaction systems, allowing for the easy reuse of enzymes and separation of polar compounds, offering more environmentally friendly approaches'. The synthesis of complex phospholipids such as cardiolipins (CLs) and bis(mono/di-acylglycero)phopshates (BMPs/BDPs) have significant value as they carry the unique ability to contain multiple fatty acids, which in turn can be linked to a range of positive health effects. The positive health effects of fish oils (EPA/DHA) are today a hot topic, which in combination with complex phospholipids present great potential for future applications. Additionally, new phospholipid species are continuously under development utilizing completely new synthetic systems with environmentally friendly approaches' in focus. Modern methods centralized on the combinatorial use of ionic liquids and enzymes for the production of novel phospholipids species reduce the use of organic solvents, allowing for the incorporation of fatty acid esters of hydroxy fatty acids (FAHFAs) into phospholipids. The science behind the synthesis of phospholipids is continuously developing for an increased amount of different applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call