Abstract

The machinability of materials is a dynamic field with enormous implications in different industrial sectors because manufacturers are constantly looking for improvements that can increase the overall productivity. Manufacturers of cutting tool inserts need to develop products that can perform at higher speeds and last longer under increasingly rigorous operating conditions. It has been revealed that cermets may exhibit better properties and performances when solid solution of multiple hard compounds is added instead of a mixture of several binary ones. In this work, a mechanically induced self-sustaining reaction (MSR) is described as a suitable synthesis method to obtain a wide range of different new quaternary carbonitride systems by milling mixtures of elemental powders of transition metals and graphite in a nitrogen atmosphere. Characterization was carried out using X-ray powder diffraction, elemental analysis, energy dispersive X-ray analysis (EDX), scanning and transmission electron microscopy and electron diffraction (ED).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call