Abstract
O b j e c t i v e s . The problem of synthesis of combinational circuits in the basis of two-input gates is considered. Those gates are AND, OR, NAND and NOR. The objective of the paper is to investigate the possibilities of application of bi-decomposition of Boolean functions to the synthesis of combinational circuits.M e t h o d s . The method for bi-decomposition is reduced to the search in a graph for a weighted two-block cover with complete bipartite subgraphs (bi-cliques).R e s u l t s . The initial Boolean function is given as two ternary matrices, one of which represents the domain of Boolean space where the function has the value 1, and the other is the domain of Boolean space where the function has the value 0. The orthogonality graph of rows of ternary matrices representing the given function is considered. The method for two-bi-clique covering the orthogonality graph of rows of ternary matrices is described. Every bi-clique in the obtained cover is assigned in a certain way with а set of variables that are the arguments of the function. This set is the weight of the bi-clique. Each of those bi-cliques defines a Boolean function whose arguments are the variables assigned to it. The functions obtained in such a way constitute the required decomposition.Co n c l u s i o n . The process of synthesis of a combinational circuit consists of a successive application of bi-decomposition to obtained functions. The suggested method allows obtaining the circuits with short delay.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.