Abstract

Nanomaterials are important class of materials due to their size and shape-dependent properties as compared to bulk materials. As a result, nanomaterials are increasingly interested in the technological applications of fundamental research. Among these semiconductor quantum dots (QDs) are a significant class of nanomaterials. Zinc Sulfide (ZnS) is an important semiconductor belongs to II–VI group in periodic table, a wide bandgap semiconductor, bulk energy gap 3.6 eV, with exciton binding energy of 39 meV, which is easily synthesizable material and chemically stable as compared to other chalcogenides and hence many research pronounced on zinc sulfide. Herein, we report the synthesized of Zinc Sulfide QDs by the chemical precipitation method using thioglycolic acid (TGA) as a capping agent and hydrazine hydrate-sulphur complex plays avital role in the growth ZnS QDs. The synthesized ZnS QDs were characterized using UV–visible absorption spectroscopy, photoluminescence spectroscopy (PL) , XRD, FTIR, SEM and TEM. To support the formation of ZnS QDs, XRD spectrum results the arrangement of ZnS in the cubic crystal system. The estimated particle size is 2.62 nm. The ZnS QDs are stable, fluorescent and spherical in shape as noted by the results of the PL spectral analysis and TEM images. The produced ZnS QDs are amorphous in nature and can be used in the applications like sensors, Field Emitting Diodes (FET), electroluminescence, flat panel displays and photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.