Abstract

The synthesis of pyridines from dinitrogen in homogeneous solution is known to be challenging considering that an N2 cleavage step needs to be combined with two N-C coupling steps. Herein, a tungsten complex bearing a tailor-made 2,2'-(tBu2As)2-substituted tolane ligand scaffold was shown to split N2 to afford the corresponding tungsten nitride, which is not the case for the corresponding (iPr2As)2-substituted derivative. The former nitride was then reacted with 2,4,6-trimethylpyrylium triflate, which led to the formation of a tungsten oxo complex, along with collidine. Over the course of this reaction, the O atom of the pyrylium starting material was replaced with an N atom via a hitherto unprecedented skeletal editing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call