Abstract

CoFe 2 O 4/ Pb ( Zr 0.53 Ti 0.47) O 3 (abbreviated as CFO/PZT) multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature. The processing included the modification and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder, the preparation of uniform pastes, and the selection of proper annealing temperature for composite thick films. Transmission electron microscopic pictures (TEM) indicated the submicron meter of particles size for both CFO and PZT particles. After annealing at 900°C for 1 h in air, tape test confirmed the quality of multiferroic thick films as well as pure CFO and PZT films. X-ray diffraction (XRD) showed a coexistence of CFO and PZT phases; furthermore, a smooth surface was observed through scanning electron microscopic (SEM) pictures along with the sharp cross-sectional picture, indicative of 100 μm of film thickness. Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature. Compared with the reported CFO/PZT multiferrroic thin films, the present ferromagnetic property was closing to that of the chemical sol-gel synthesized film and even that from the physical pulsed laser deposition technique. However, the ferroelectric property showed a degenerated behavior, possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.